首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4165篇
  免费   1024篇
  国内免费   715篇
测绘学   99篇
大气科学   326篇
地球物理   3023篇
地质学   1161篇
海洋学   738篇
天文学   27篇
综合类   188篇
自然地理   342篇
  2024年   9篇
  2023年   57篇
  2022年   137篇
  2021年   160篇
  2020年   212篇
  2019年   216篇
  2018年   192篇
  2017年   210篇
  2016年   201篇
  2015年   256篇
  2014年   317篇
  2013年   263篇
  2012年   252篇
  2011年   297篇
  2010年   273篇
  2009年   280篇
  2008年   282篇
  2007年   314篇
  2006年   257篇
  2005年   227篇
  2004年   210篇
  2003年   189篇
  2002年   174篇
  2001年   128篇
  2000年   141篇
  1999年   101篇
  1998年   96篇
  1997年   86篇
  1996年   78篇
  1995年   72篇
  1994年   56篇
  1993年   52篇
  1992年   30篇
  1991年   20篇
  1990年   17篇
  1989年   10篇
  1988年   7篇
  1987年   7篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1979年   2篇
  1954年   1篇
排序方式: 共有5904条查询结果,搜索用时 125 毫秒
61.
程俊  王淑红  黄怡  颜文 《海洋科学》2019,43(5):110-122
综述了天然气水合物赋存区甲烷渗漏活动的地球化学响应指标的研究进展,分析了应用单一指标识别甲烷渗漏活动各自所存在的问题,包括浅表层沉积物孔隙水中CH_4、SO_4~(2–)、Cl~–等离子浓度随深度的变化;浅层沉积物全岩W_(TOC)(W表示质量分数,TOC表示总有机碳)和W_(TS)(TS表示总硫)之间的相关性及比值;自生碳酸盐岩δ~(13)C和δ~(18)O;自生矿物重晶石、黄铁矿、自生石膏的δ~(34)S;有孔虫壳体和生物标志化合物的δ~(13)C等。结果表明孔隙水中的CH_4、SO4_~(2–)浓度及溶解无机碳的碳同位素组成可以用来识别目前正在发生的甲烷渗漏活动;而沉积物中的WTS、自生矿物的δ~(34)S、钡含量及其异常峰值和生物标志化合物的δ~(13)C等指标的联合使用可以更真实准确地反映地质历史时期天然气水合物赋存区的甲烷渗漏活动。因此,在实际研究过程中,可将孔隙水和沉积物两种介质的多种指标相结合。随着非传统稳定同位素(Fe、Ca、Mg等)和沉积物氧化还原敏感元素(Mo、V、U等)等研究的发展,甲烷渗漏活动地球化学响应指标的研究也将得到拓展,而多种地球化学指标的联合使用将为天然气水合物勘探及其形成分解过程识别研究提供重要的科学依据。  相似文献   
62.
Wildfires change the infiltration properties of soil, reduce the amount of interception and result in increased runoff. A wildfire at Northeast Attica, Central Greece, in August 2009, destroyed approximately one third of a study area consisting of a mixture of shrublands, pastures and pines. The present study simultaneously models multiple semi‐arid, shrubland‐dominated Mediterranean catchments and assesses the hydrological response (mean annual and monthly runoff and runoff coefficients) during the first few years following wildfires. A physically based, hydrological model (MIKE SHE) was chosen. Calibration and validation results of mean monthly discharge presented very good agreement with the observed data for the pre‐wildfire and post‐wildfire period for two subcatchments (Nash–Sutcliffe Efficiency coefficient of 79.7%). The model was then used to assess the pre‐wildfire and post‐wildfire runoff responses for each of seven catchments in the study area. Mean annual surface runoff increased for the first year and after the second year following the wildfires increased by 112% and 166%, respectively. These values are within the range observed in similar cases of monitored sites. This modelling approach may provide a way of prioritizing catchment selection with respect to post‐fire remediation activities. Additionally, this modelling assessment methodology would be valuable to other semi‐arid areas because it provides an important means for comprehensively assessing post‐wildfire response over large regions and therefore attempts to address some of the scaled issues in the specific literature field of research. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
63.
64.
Assuming that the pile variable cross section interacts with the surrounding soil in the same way as the pile toe does with the bearing stratus, the interaction of pile variable cross section with the surrounding soil is represented by a Voigt model, which consists of a spring and a damper connected in parallel, and the spring constant and damper coefficient are derived. Thus, a more rigid pile–soil interaction model is proposed. The surrounding soil layers are modeled as axisymmetric continuum in which its vertical displacements are taken into account and the pile is assumed to be a Rayleigh–Love rod with material damping. Allowing for soil properties and pile defects, the pile–soil system is divided into several layers. By means of Laplace transform, the governing equations of soil layers are solved in frequency domain, and a new relationship linking the impedance functions at the variable‐section interface between the adjacent pile segments is derived using a Heaviside step function, which is called amended impedance function transfer method. On this basis, the impedance function at pile top is derived by amended impedance function transfer method proposed in this paper. Then, the velocity response at pile top can be obtained by means of inverse Fourier transform and convolution theorem. The effects of pile–soil system parameters are studied, and some conclusions are proposed. Then, an engineering example is given to confirm the rationality of the solution proposed in this paper. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
65.
The effects of land use changes on the ecology and hydrology of natural watersheds have long been debated. However, less attention has been given to the hydrological effects of forest roads. Although less studied, several researchers have claimed that streamflow changes related to forest roads can cause a persistent and pervasive effect on hillslope hydrology and the functioning of the channel system. The main potential direct effects of forest roads on natural watersheds hydrologic response are runoff production on roads surfaces due to reduced infiltration rates, interruption of subsurface flow by road cutslopes and rapid transfer of the produced runoff to the stream network through roadside ditches. The aforementioned effects may significantly modify the total volume and timing of the hillslope flow to the stream network. This study uses detailed field data, spatial data, hydro‐meteorological records, as well as numerical simulation to investigate the effects of forest roads on the hydrological response of a small‐scale mountain experimental watershed, which is situated in the east side of Penteli Mountain, Attica, Greece. The results of this study highlight the possible effects of forest roads on the watersheds hydrological response that may significantly influence direct runoff depths and peak flow rates. It is demonstrated that these effects can be very important in permeable watersheds and that more emphasis should be given on the impact of roads on the watersheds hydrological response. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
66.
The model proposed originally by Mannheim and Kazanas for fitting the shapes of galactic rotation curves has recently been considered by Grumiller to describe gravity of a central object at large distances. Herein we employ the same geometry within the context of nonlinear electrodynamics (NED). Pure electrical NED model is shown to generate the novel Rindler acceleration term in the metric which explains anomalous behaviors of test particles/satellites. Remarkably a pure magnetic model of NED yields flat rotation curves that may account for the missing dark matter. Weak and strong energy conditions are satisfied in such models of NED.  相似文献   
67.
This paper presents an analytical solution for the lateral dynamic response of a pipe pile in a saturated soil layer. The wave propagations in the saturated soil and the pipe pile are simulated by Biot's three‐dimensional poroelastic theory and one‐dimensional elastic theory, respectively. The governing equations of soil are solved directly without introducing potential functions. The displacement response and dynamic impedances of the pipe pile are obtained based on the continuous conditions between the pipe pile and both the outer and inner soil. A comparison with an existing solution is performed to verify the proposed solution. Selected numerical results for the lateral dynamic responses and impedances of the pipe pile are presented to reveal the lateral vibration characteristics of the pile‐soil system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
68.
A long‐term study of O, H and C stable isotopes has been undertaken on river waters across the 7000‐km2 upper Thames lowland river basin in the southern UK. During the period, flow conditions ranged from drought to flood. A 10‐year monthly record (2003–2012) of the main River Thames showed a maximum variation of 3‰ (δ18O) and 20‰ (δ2H), although interannual average values varied little around a mean of –6.5‰ (δ18O) and –44‰ (δ2H). A δ2H/δ18O slope of 5.3 suggested a degree of evaporative enrichment, consistent with derivation from local rainfall with a weighted mean of –7.2‰ (δ18O) and –48‰ (δ2H) for the period. A tendency towards isotopic depletion of the river with increasing flow rate was noted, but at very high flows (>100 m3/s), a reversion to the mean was interpreted as the displacement of bank storage by rising groundwater levels (corroborated by measurements of specific electrical conductivity). A shorter quarterly study (October 2011–April 2013) of isotope variations in 15 tributaries with varying geology revealed different responses to evaporation, with a well‐correlated inverse relationship between Δ18O and baseflow index for most of the rivers. A comparison with aquifer waters in the basin showed that even at low flow, rivers rarely consist solely of isotopically unmodified groundwater. Long‐term monitoring (2003–2007) of carbon stable isotopes in dissolved inorganic carbon (DIC) in the Thames revealed a complex interplay between respiration, photosynthesis and evasion, but with a mean interannual δ13C‐DIC value of –14.8 ± 0.5‰, exchange with atmospheric carbon could be ruled out. Quarterly monitoring of the tributaries (October 2011–April 2013) indicated that in addition to the aforementioned factors, river flow variations and catchment characteristics were likely to affect δ13C‐DIC. Comparison with basin groundwaters of different alkalinity and δ13C‐DIC values showed that the origin of river baseflow is usually obscured. The findings show that long‐term monitoring of environmental tracers can help to improve the understanding of how lowland river catchments function. Copyright © NERC 2015. Hydrological Processes © 2015 John Wiley & Sons, Ltd.  相似文献   
69.
River water temperature is a key physical variable controlling several chemical, biological and ecological processes. Its reliable prediction is a main issue in many environmental applications, which however is hampered by data scarcity, when using data‐demanding deterministic models, and modelling limitations, when using simpler statistical models. In this work we test a suite of models belonging to air2stream family, which are characterized by a hybrid formulation that combines a physical derivation of the key equation with a stochastic calibration of parameters. The air2stream models rely solely on air temperature and streamflow, and are of similar complexity as standard statistical models. The performances of the different versions of air2stream in predicting river water temperature are compared with those of the most common statistical models typically used in the literature. To this aim, a dataset of 38 Swiss rivers is used, which includes rivers classified into four different categories according to their hydrological characteristics: low‐land natural rivers, lake outlets, snow‐fed rivers and regulated rivers. The results of the analysis provide practical indications regarding the type of model that is most suitable to simulate river water temperature across different time scales (from daily to seasonal) and for different hydrological regimes. A model intercomparison exercise suggests that the family of air2stream hybrid models generally outperforms statistical models, while cross‐validation conducted over a 30‐year period indicates that they can be suitably adopted for long‐term analyses. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
70.
A simplified method with a dynamic Winkler model to study the seismic response of composite caisson–piles foundations (CCPF1) is developed. Firstly, with the dynamic Winkler model, the kinematic response of the CCPF subjected to vertically propagating seismic S-wave is analyzed by coupling the responses of caisson part and pile part. Secondly, a simplified model for the foundation–structure system is created with the structure simplified as a lumped mass connected to the foundation with an elastic column, and through the Fast Fourier Transformation (FFT) this model is enabled to solve transient seismic problems. Thirdly, the proposed method for the seismic response of CCPF-structure systems is verified by comparison against 3D dynamic finite element simulation, in which the Domain Reduction Method (DRM2) is utilized. Lastly, the mechanism and significance of adding piles in improving the earthquake resistance of the foundation and structure is analyzed through an example with different soil conditions. Discovered in this study is that adding piles under the caisson is an efficient way to increase seismic resistant capability of the soil–foundation–structure system, and the main mechanism of that is the elimination of the pseudo-resonance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号